Skip to main content

Multidimensional Nature of Time and Space (15)

I have commented before on - what I refer to as - the Pythagorean Dilemma.


In other words the significance of the discovery that the square root of 2 is an (algebraic) irrational number, was as much of a qualitative as a quantitative nature.

As I have stated, the Pythagoreans recognised an important qualitative significance to number. Prior to their discovery of the irrational nature of 2, they had assumed that all number quantities were of a rational nature. Happily this complemented well the scientific paradigm they used to interpret this reality which qualitatively was also of a rational nature.


So the true significance of the irrational nature of 2, is that the Pythagoreans lacked the qualitative holistic means to explain how it could arise, thus shattering the harmonious balance they sougth to preserve with respect to mathematical activity.

The rational paradigm which still dominates present scientific and mathematical thinking is basically suited to interpretation of meaning that is of a finite discrete nature.

However an irrational number by its very nature combines both finite (discrete) and infinite (continuous) aspects. Thus its quantitative value can be approximated as a rational number to any required degree of accuracy. However its qualitative nature leads to a continuous unending decimal sequence (with no fixed pattern).

Therefore though the very nature of an irrational number - literally - transcends the mere rational perspective, Conventional Mathematics can only attempt to deal with such a number in a reduced quantitative manner.


Now once again the (linear) rational paradigm is 1-dimensional in nature (where all number quantities are ultimately expressed in 1-dimensional terms).



Over the past 14 blog entries however I have been at pains to point out that a complementary (circular) rational paradigm exists where every dimensional number is defined in items of the same base quantity of 1. And as we have seen these dimensions then bear an important inverse relationship with their corresponding roots (in quantitative terms).

So in these contributions, I have shown how all rational numbers (positive and negative) possess a unique qualitative significance that intimately applies to the nature of time and space (in both physical and psychological terms).


However just as an irrational number properly combines both finite (discrete) and infinite (continuous) aspects in its very nature, the same equally applies to an irrational number when given its appropriate qualitative interpretation.

So the upshot of this is that from both the quantitative and qualitative perspectives, irrational numbers are of a hybrid nature truly requiring both Type 1 (analytic) and Type 2 (holistic) mathematical interpretation.

And when this is done we can then give meaning to the irrational nature of time and space (in physical and psychological terms).

Comments

  1. The dimension of a space or object is informally defined as the minimum number of coordinates needed to specify any point within it.dividing rational numbers

    ReplyDelete

Post a Comment

Popular posts from this blog

The Number 137

The number 137 has raised considerable interest. Its reciprocal (1/137) approx. is referred to as the fine structure constant in physics and is related to the probability of electrons (or other particles) emitting or absorbing particles. Much has been written regarding the "mystical" properties of this number. Indeed some years ago my attention was drawn to its significance through correspondence relating to Jungian archetypes. And just recently an interesting article by Giorgio Piacenza has been published on Frank Visser's Integral World web-site. Without wanting to claim too much for the "mystical significance" of this number, I would like to initially broaden the topic to highlight some important general properties of prime numbers (of which 137 is a specific example). From one perspective prime numbers can be viewed as the basic building blocks of the natural number system (which we literally view in a linear manner as stretched out on a strai...

Higgs Boson or Higgs Illusion

I was looking at the BBC Horizon programme last night on the Higgs Boson which proved quite interesting. As was widely reported in the media late last year, a determined attempt has been made to find convincing experimental evidence for the existence of the Higgs Boson which if verified would help to complete the standard particle model of physics. One outstanding problem with this model is that it had yet to provide a convincing explanation as to how particles acquire mass. And as this requirement is crucial for explaining the existence of all phenomena, the issue is of great importance. It had been proposed in the late 60's by Peter Higgs that what gives mass to particles is related to a seemingly invisible field viz. the Higgs Field. And as all fields are associated with corresponding particles, it was postulated that if this supposition of the existence of a new field was correct that it should in principle be possible to detect its associated particle. However the tech...

The Number 24

24 in its own right is a fascinating number. Firstly it represents all the permutations of 4 (containing 4 elements) that can be made from 4 which is 4 * 3 * 2 * 1. However there is another very interesting property that if we add up the squares of the consecutive numbers from 1 to 24 (inclusive) that the result 4900 will be the square of an exact whole number i.e (70). This is the only case known where the sum of squares of successive natural numbers is equal to the square of another whole number! Interestingly the sum of 1 + 2 + 3 +....+ 24 = 300, while the sum of the prime numbers between 1 and 24 = 100! 24 - as we shall see - plays a key role in Ramanujan functions, which in turn provides a direct link to the number of dimensions in one of the earlier string theories. 24 also plays a crucial role in the search for the Monster Group (the largest known symmetrical object) which again provides a direct connection with string theory. As we know, if the proper divisors of ...